
GNN Scaling – next steps

Steve Farrell
NERSC, LBNL

Exa.TrX F2F, 2020-04-07

Why should we use distributed training?

● We said we’d use HPC + distributed training in our proposal ;)

● It allows to more quickly train large models on large, complex datasets

● We have large, complex graphs; a lot of potential intra-event parallelism

● We can have large simulated datasets in HEP

● Publishing research on large scale GNN training will be valuable to the

community

2

Parallelism strategies

3

Data Parallelism
Distribute input
samples.

Model Parallelism
Distribute network
structure (layers).

Layer Pipelining
Partition by layer.

Fig. credit: Ben-Nun and Hoefler arXiv:1802.09941

Data parallelism, synchronous Updates

4

Gradients are computed locally and summed
across nodes. Updates are propagated to all
nodes

● stable convergence

● scaling is not optimal because all nodes have

to wait for reduction to complete

● global (effective) batch size grows with

number of nodes
Synchronous SGD, decentralized

Parallelizing Graph Neural Networks
● Most deep learning literature on scaling training is on computer vision

applications
● Graph deep learning is much newer, so methods for scaling are much less

established
● Also, graph deep learning is a diverse set of applications, not all of which are

applicable to us

○ E.g., FaceBook has (probably) the largest social network graph, but it’s
essentially just one enormous graph

5

PyTorch-BigGraph: https://arxiv.org/abs/1903.12287
“scale to graphs with billions of nodes and trillions of edges”

Our GNN parallelism
● Naïve domain parallelism

○ Split into sectors, train on them independently

○ You don’t need the whole detector context to find
tracks in a region

○ (Minor) technical challenges in doing inference on
a whole event

○ Small batch sizes are good for generalization

● Proper domain parallelism
○ Break graph into sectors/partitions, but handle

the boundaries with communication
○ Definitely more difficult to implement

6

Other approaches
also under
consideration

HPC scaling work with Cray BDC
● Through the Cray Big Data Center collaboration, we’re engaging with folks

from Cray and LBNL’s CRD to push on HPC scaling of GNNs (for tracking)
○ Strong interest in scaling GNNs in PyTorch
○ The basic plan is to do large scale training of GNNs in a larger Population

Based Training run
● Computational challenges

○ Graphs with sparse connectivity => need sparse op support

○ Variable sized graphs => need to handle load imbalance at scale
○ Large scale training of GNNs => not much experience/intuition

● Using my PyTorch implementation of message-passing and “attention”
networks here: https://github.com/sparticlesteve/heptrkx-gnn-tracking

7

Single node performance [Saliya Ekanayake, LBNL]
● Compared speed and memory of dense and multiple sparse representations

● PyTorch-Geometric was the best of
what we tested in terms of speed and
memory

8

Training Time (s)

Dataset N
(tr/val)

agnn dense agnn
scatter add

agnn
spspmm

Med 8
(7/1)

24.0416 9.63175 10.6389

Big 64
(60/4)

81.9128 102.74

Scaling

● Distributed training scaling on OLCF and NERSC machines

● Scaling efficiency is not bad, actually, considering that it’s
expected to be adversely affected by load imbalance

9

On Summit [Aris]
Cori GPUCori CPU

Training instabilities
● Occasionally suffering from spikey/unstable behavior in the training loss when training

distributed
● I’ve spent a bit of time digging into this

○ Tracking gradient norms, weight norms
○ Reducing graph size variance
○ Gets worse with larger models
○ Improved somewhat with layer norm, weight decay

● It was not fully solved, but I expect it’s related to the
interactions between, class weights (real vs. fake edges),
variable sample sizes and purities, optimizer momentum,
and gradient reductions as averages of averages.

● Other things expected to help
○ Stabilize training with auxiliary targets (e.g. predicting pT)
○ Balance data sampling

10

Example
loss spike
in training

Balanced data sampling
● Distribution of graph sizes leads to load

imbalance

● Solution in development, inspired by the
work done in Etalumis project:
https://arxiv.org/abs/1907.03382

○ Bin dataset into buckets of similar “size”

○ Sample batches from these buckets

● There can be effects on
convergence, which we’ll
need to study

○ It worked for Etalumis,
though

11

Training compute variability

Graph size variability

Outlook and next steps
● This work stalled because of lack of time, but is now being picked back up

● Our original plan was to use Cori KNL for a large scale study (and submit to something like
SC, IPDPS), but this has been abandoned

○ KNL speed was factor ~8 slower than Haswell, would require considerable effort with
Intel to improve; decided not worth it

○ Haswell system could still be useful, though it is in high demand nowadays

● Current plan is to target a smaller system with GPUs (e.g. Cori-GPU) to wrap up the work
with Cray, and submit to a workshop

● After that, there are more fun things to do

○ Push further on scaling, run on Summit and upcoming Perlmutter

○ Smarter graph partitioning/parallelization

○ Scale the newer methods explored by Nick and Daniel (and others)

12

